
IEEE Open Journal of

Control Systems

Received 30 April 2024; revised 22 July 2024; accepted 31 July 2024. Date of publication 12 August 2024;
date of current version 25 September 2024. Recommended by Guest Editor Peter Seiler.

Digital Object Identifier 10.1109/OJCSYS.2024.3441768

Learning to Boost the Performance of Stable
Nonlinear Systems

LUCA FURIERI (Member, IEEE), CLARA LUCÍA GALIMBERTI (Member, IEEE),
AND GIANCARLO FERRARI-TRECATE (Senior Member, IEEE)

(Intersection of Machine Learning with Control)
École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

CORRESPONDING AUTHOR: LUCA FURIERI (e-mail: luca.furieri@epfl.ch).

This work was supported by the Swiss National Science Foundation (SNSF) under the NCCR Automation Grant Agreement 51NF40_80545. The work of Luca
Furieri was supported by the SNSF for the Ambizione under Grant PZ00P2_208951.

ABSTRACT The growing scale and complexity of safety-critical control systems underscore the need to
evolve current control architectures aiming for the unparalleled performances achievable through state-of-
the-art optimization and machine learning algorithms. However, maintaining closed-loop stability while
boosting the performance of nonlinear control systems using data-driven and deep-learning approaches
stands as an important unsolved challenge. In this paper, we tackle the performance-boosting problem
with closed-loop stability guarantees. Specifically, we establish a synergy between the Internal Model
Control (IMC) principle for nonlinear systems and state-of-the-art unconstrained optimization approaches
for learning stable dynamics. Our methods enable learning over specific classes of deep neural network
performance-boosting controllers for stable nonlinear systems; crucially, we guarantee Lp closed-loop sta-
bility even if optimization is halted prematurely. When the ground-truth dynamics are uncertain, we learn
over robustly stabilizing control policies. Our robustness result is tight, in the sense that all stabilizing
policies are recovered as the Lp -gain of the model mismatch operator is reduced to zero. We discuss
the implementation details of the proposed control schemes, including distributed ones, along with the
corresponding optimization procedures, demonstrating the potential of freely shaping the cost functions
through several numerical experiments.

INDEX TERMS Closed-loop stability, distributed control, internal model control, learning for control,
optimal control, uncertain systems.

I. INTRODUCTION
The success of control systems across a broad spectrum
of applications—from manufacturing to water, power, and
transportation networks [1]—is rooted not only in advance-
ments in sensing, computation, and communication but also
in the growing availability of methods for designing model-
based controllers capable of stabilizing nonlinear systems at
nominal operating conditions.

However, in many applications, merely stabilizing the
closed-loop system is not sufficient; achieving satisfactory
performance is also crucial, often necessitating the integration
of additional control loops. In Nonlinear Optimal Control
(NOC), performance requirements are typically encoded in

the shape of the cost function that the control policy strives
to minimize. Consequently, it is beneficial to develop NOC
algorithms that accommodate general nonlinear costs to en-
able sophisticated closed-loop behaviors, such as collision
avoidance or waypoint tracking in swarms of robots.

In this paper, we tackle the following performance-boosting
problem: given a discrete-time nonlinear system that is stable
or has been pre-stabilized using a base controller, how can we
enhance its performance during the transient—that is, before
the system settles into a steady state—by employing general
cost functions without compromising stability?

A first approach to designing performance-boosting reg-
ulators involves resorting to NOC methods with stability
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guarantees. Despite extensive research in this area [2], the
problem is fully understood only when the system dynamics
are linear and the cost admits a convex reformulation. For non-
linear systems, traditional methods for addressing NOC in-
clude dynamic programming and the maximum principle [3],
[4]. However, the computation of NOC policies through these
methods often faces significant computational challenges [4].
Furthermore, to ensure stability, stringent limitations must be
imposed on the class of costs that can be utilized. An alterna-
tive approach to tackling performance-boosting is offered by
receding-horizon control schemes, such as Nonlinear Model
Predictive Control (NMPC) [5]. These controllers are based
on real-time optimization; a finite-horizon NOC problem is
solved at each time instant to determine the control input.
However, a significant limitation of NMPC is that the control
policy can seldom be precomputed and stored in an explicit
form, which makes NMPC inapplicable when the control
platform lacks the computational resources necessary to solve
mathematical programs in real-time. Moreover, similar to
NOC, ensuring stability requires imposing strong limitations
on the class of admissible cost functions [5].

More recently, Reinforcement Learning (RL) and Deep
Neural Networks (DNNs) have emerged as powerful tools
that enable agents to understand and optimally interact with
complex environments and dynamical systems, e.g., [6], [7].
Many RL approaches are based on minimizing arbitrary cost
functions, calling for the use of broad sets of candidate non-
linear control policies. To this end, RL methods often employ
families of policies that incorporate deep Neural Networks
(NNs), due to their ability to model rich classes of non-
linear functions. These capabilities have led to remarkable
applications, such as four-legged robots navigating challeng-
ing terrains [8] and drones that can outperform humans in
races [9], [10]. On the other hand, general methodologies for
designing RL policies for nonlinear dynamical systems, while
ensuring closed-loop stability, are currently scarce and may be
limited by strong assumptions [11], [12], [13]. As a result, so
far the applicability of RL approaches has been mainly limited
to systems that are not safety-critical.

Independent of their application in RL, NNs have been
employed in model-based control since the 1990s for ap-
proximating nonlinear receding horizon policies [14], [15] or
synthesizing nonlinear regulators from scratch [16]. Recent
results on the design of provably stabilizing DNN control
policies fall into two categories. The first one comprises
constrained optimization approaches [11], [17], [18] that en-
sure global or local stability by enforcing Lyapunov-like
inequalities during optimization. However, conservative sta-
bility constraints can severely restrict the range of admissible
policies or fail to produce a viable controller even when
it exists. Additionally, enforcing constraints such as linear
matrix inequalities becomes a computational bottleneck in
large-scale applications.

The second category embraces unconstrained optimiza-
tion approaches, aiming to define classes of control policies
with built-in stability guarantees [19], [20], [21]. These

methods, which are similar to those developed in this pa-
per, allow unconstrained optimization over finitely many
parameters—using, for instance, standard gradient descent
techniques—without sacrificing stability, regardless of the
chosen parameter values. Optimizing over sets of stabilizing
policies has two main benefits. First, it completely decou-
ples the stabilization problem from the choice of the cost
being optimized. Second, it enables stability by design, that
is, the ability to guarantee closed-loop stability even if the
policy optimization ends at a local minimum or is prematurely
halted. However, these approaches are limited to discrete-time
linear systems [19], [20] or to continuous-time systems in
the port-Hamiltonian form [21]. While recent work surpasses
the limitations above [22], [23], in real-world applications,
the knowledge about the system model is not perfect. The
impact of modeling errors on the parametrizations of stable
closed-loop maps for nonlinear systems has remained largely
unexplored.

A. CONTRIBUTIONS
This paper explores approaches to solve performance-
boosting problems in general discrete-time, time-varying
systems. Specifically, we develop unconstrained optimization
approaches based on classes of state-feedback policies that
induce closed-loop dynamics described by specific classes of
stable and deep NNs.

After formally stating the performance-boosting problem in
Section II, we present our first contribution, which provides a
complete characterization of the class of stability-preserving
controllers for stable systems. This result is presented in Sec-
tion III and reveals that an Internal Model Control (IMC)
structure [24], [25], [26] allows characterizing, without con-
servatism, the class of all stability-preserving controllers,
where the only free parameter is an Lp operator. Our results
hinge on adapting nonlinear variants of the Youla parametriza-
tion [27], [28], [29] to discrete-time systems in state-space
with process noise, and revealing their connections with IMC
schemes [24], [25], [26] in this setup.

Further, we examine the relationship with the recently pro-
posed nonlinear System Level Synthesis (SLS) framework
developed in [30]. In Section IV, our main contribution is that
the proposed approach is compatible with scenarios where
only an approximate system description is available, such as
models identified from data or derived from simplified phys-
ical principles. Specifically, under a finite gain assumption
on the model mismatch, stability can always be preserved
by embedding a nominal system model and optimizing over
nonlinear controllers with a sufficiently reduced gain on the
free Lp parameter. Importantly, the method ensures vanishing
conservatism in the class of parametrized stabilizing poli-
cies as the model uncertainty approaches zero. Additionally,
by considering networks of interconnected subsystems, we
demonstrate how the IMC structure of our controllers natu-
rally lends itself to the development of distributed policies
where the communication topology mirrors the subsystem
couplings.
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Finally, Section V bridges the gap between theoretical
developments and computations, showing how to use Re-
current Equilibrium Networks (RENs) [31], [32] to obtain
a finite-dimensional parametrization of performance-boosting
controllers that can include DNNs. The final part of the paper
in Section VI presents several simulations by considering co-
ordination problems for mobile robots. Specifically, we show
how, similarly to RL, the freedom in specifying the opti-
mization cost allows designing NN controllers that can boost
various forms of performance and safety, reaching beyond
classical optimal control objectives consisting of the sum of
stage-costs over time [3].

This paper builds upon our initial work [22] where we
first derived the parametrization of all stabilizing controllers.
However, unlike in [22], the IMC form of stabilizing con-
trollers and the robustness analysis presented here are new.
More specifically, the controllers in [22] were based on the
nonlinear SLS parametrization introduced in [30], while the
controllers in this paper rely on a much more intuitive IMC
formulation. Additionally, the main technical contributions
about robustness with vanishing conservatism included in this
paper are novel and not included in [22]. Finally, the dis-
tributed control architectures and the majority of simulations
presented in this work are not present in [22].

B. NOTATION
Signals and operators: The set of all sequences x =
(x0, x1, x2, . . .), where xt ∈ R

n, t ∈ N, is denoted as �n.
Moreover, x belongs to �n

p ⊂ �n with p ∈ N ∪ ∞ if ‖x‖p =
(
∑∞

t=0 |xt |p)
1
p < ∞, where | · | denotes any vector norm. We

say that x ∈ �n∞ if supt |xt | < ∞. When clear from the con-
text, we omit the superscript n from �n and �n

p. An operator

A is said to be �p-stable1 if it is causal and A(w) ∈ �m
p for

all w ∈ �n
p. Equivalently, we write A ∈ Lp. We say that an Lp

operator A : w �→ u has finite Lp-gain γ (A) > 0 if ‖u‖p ≤
γ (A)‖w‖p, for all w ∈ �n

p.
Time-series: We use the notation x j:i to refer to the trun-

cation of x to the finite-dimensional vector (xi, xi+1, . . . , x j ).
An operator A : �n → �m is said to be causal if A(x) =
(A0(x0),A1(x1:0), . . . ,At (xt :0 ), . . .). If in addition At (xt :0 ) =
At (xt−1:0, 0), then A is said to be strictly causal. Similarly, we
define A j:i(x j:0) = (Ai(xi:0 ),Ai+1(xi+1:0), . . . ,A j (x j:0)). For a
matrix M ∈ R

m×n, Mx = (Mx0,Mx1, . . .) ∈ �m.
Graph theory: Given an undirected graph G = (V, E) de-

scribed by the set of nodes V = {1, . . . ,N} and the set of
edges E ⊂ V × V, we denote set of neighbors of node i, in-
cluding i itself by Ni = {i} ∪ { j | {i, j} ∈ E} ⊆ V. We denote
with col j∈V(v[ j] ) a vector which consists of the stacked sub-
vectors v[ j] from j = 1 to j = N and with v[Ni] a vector
composed by the stacked subvectors v[ j] of all neighbors of
node i, i.e., v[Ni] = col j∈Ni (v

[ j] ). For a signal x ∈ �n, where
xt = coli∈V(x[i]

t ), x[i]
t ∈ R

ni , and n =∑N
i=1 ni, we denote with

1We also say that the operator is stable, for short, when the value of p is
clear from the context.

x[i] ∈ �ni the sequence x[i] = (x[i]
0 , x[i]

1 , . . .). Similarly, we

define x[Ni] = (x[Ni]
0 , x[Ni]

1 , . . .).

II. THE PERFORMANCE-BOOSTING PROBLEM
We consider nonlinear discrete-time time-varying systems

xt = ft (xt−1:0, ut−1:0) + wt , t = 1, 2, . . . , (1)

where xt ∈ R
n is the state vector, ut ∈ R

m is the control input,
wt ∈ R

n stands for unknown process noise with w0 = x0, and
f0 = 0. The system model (1) is very general. For instance, it
can describe the dynamics of the error between the state of a
nonlinear system and a reference trajectory in �p. In operator
form, system (1) is equivalent to

x = F(x,u) + w , (2)

where F : �n × �m → �n is the strictly causal operator
such that F(x,u) = (0, f1(x0, u0), . . . , ft (xt−1:0, ut−1:0), . . .).
Note that w = (x0,w1, . . .) and u collects all data needed for
defining the system evolution over an infinite horizon. As an
example, when the system (1) takes the Linear Time Invariant
(LTI) form

xt = Axt−1 + But−1 + wt , (3)

the model (2) becomes⎡⎢⎢⎢⎢⎣
x0

x1

x2
...

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎣
0 0 0 · · ·
A 0 0 · · ·
0 A 0 · · ·
...

...
...

. . .

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x0

x1

x2
...

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
0 0 0 · · ·
B 0 0 · · ·
0 B 0 · · ·
...

...
...

. . .

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

u0

u1

u2
...

⎤⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎣
x0

w1

w2
...

⎤⎥⎥⎥⎥⎦ .
We consider disturbances with support Wt ⊆ R

n following a
random vector distribution Dt , that is, wt ∈ Wt and wt ∼ Dt

for every t = 0, 1, . . .. In order to control the behavior of sys-
tem (1), we consider nonlinear, state-feedback, time-varying
control policies

u = K(x) = (K0(x0),K1(x1:0), . . . ,Kt (xt :0 ), . . .) , (4)

where K : �n → �m is a causal operator to be designed. Note
that the controller K can be dynamic, as Kt can depend on the
whole past history of the system state. Since for each w ∈ �n

and u ∈ �m the system (1) produces a unique state sequence
x ∈ �n, (2) defines a unique transition operator

F : (u,w) �→ x ,

which provides an input-to-state model of system (1). Simi-
larly, for each w ∈ �n the closed-loop system (1)–(4) produces
unique trajectories. Hence, the closed-loop mapping w �→
(x,u) is well-defined. Specifically, for a system F and a con-
troller K, we denote the corresponding induced closed-loop
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operators w �→ x and w �→ u as �x[F,K] and �u[F,K],
respectively. Therefore, we have x = �x[F,K](w) and u =
�u[F,K](w) for all w ∈ �n.

Definition 1: The closed-loop system (1)–(4) is �p-stable if
�u[F,K] and �u[F,K] are in Lp.

Our goal is to synthesize a control policy K solving the
following problem.

Problem 1 (Performance boosting): Assume that F lies
in Lp. Find K solving the finite-horizon Nonlinear Optimal
Control (NOC) problem

min
K(·)

EwT :0 [L(xT :0, uT :0 )] (5a)

s. t. xt = ft (xt−1:0, ut−1:0) + wt , w0 = x0 ,

ut = Kt (xt :0 ) , ∀t = 0, 1, . . . ,

(�x[F,K],�u[F,K]) ∈ Lp , (5b)

where L(·) defines any piecewise differentiable lower
bounded loss over realized trajectories xT :0 and uT :0, and the
expectation EwT :0 [·] removes the effect of disturbances wT :0

on the realized values of the loss.2

The main feature of (5) is that the cost is optimized over
the finite horizon 0, . . . ,T , but under the strict requirement
that the closed-loop system is stable when it evolves over
0, . . . ,+∞. In other words, the feedback controller must pre-
serve stability of F, and its role is to boost the performance
of the system in the transient 0, . . . ,T . As it will be clear
in the sequel, we consider iterative control design algorithms
based on gradient descent that exclusively search within sets
of controllers that are stability-preserving by design. This
guarantees closed-loop stability during the optimization of the
policy parameters. Note also that, as it is standard in NOC,
we do not expect gradient descent to find the globally optimal
solution for any initialization – this is generally impossible for
problems beyond Linear Quadratic Gaussian (LQG) control,
which enjoy convexity of the cost and linearity of the optimal
policies [33], [34]. Furthermore, the expected value in (5a)
can seldom be computed3 and is approximated by using sam-
ples of wT :0. Our design guarantees that, in spite of all these
limitations, closed-loop stability is never lost.

III. PARAMETRIZATION OF ALL STABILITY-PRESERVING
CONTROLLERS
We show how to parametrize all and only the stability-
preserving policies by using an IMC control architecture [24],
[25], depending on an operator M that can be freely chosen
in Lp. Specifically, the block diagram of the proposed control
architecture is represented in Fig. 1 and it includes a copy
of the system dynamics, which is used for computing the

2Another common choice is to use maxwT :0∈WT :0
[·] instead of the expec-

tation. Other useful choices include VarwT :0 [·], CVARwT :0 [·], and weighted
combinations of all the above. In practice, one can approximate the chosen
operator that removes the effect of disturbances from the cost by performing
multiple experiments.

3For instance because it is too costly or the distribution D is unknown.

FIGURE 1. IMC architecture parametrizing of all stabilizing controllers in
terms of one freely chosen operator M ∈ Lp.

estimate ŵ of the disturbance w. A key advantage of the pro-
posed IMC parametrization is its compatibility with recently
proposed neural network dynamical system models such as
those described in [31], [32]. As we discuss in Section V,
these models enable the learning of performance-boosting
stabilizing controllers by optimizing a set of free parameters
θ ∈ R

d , for instance, through simple gradient descent. We are
now in a position to introduce the main result.

Theorem 1: Assume that the operator F is �p-stable, i.e.
x ∈ �p if (w,u) ∈ �p, and consider the evolution of (2) where
u is chosen as

u = M(x − F(x,u)) , (6)

for a causal operator M : �n → �m. Let K be the operator
such that u = K(x) is equivalent to (6).4 The following two
statements hold true.

1) If M ∈ Lp, then the closed-loop system is �p-stable.
2) If there is a causal policy C such that

�x[F,C], �u[F,C] ∈ Lp, then

M = �u[F,C] , (7)

gives K = C.
Proof: We prove 1). For compactness, define ŵ = x −

F(x,u). As highlighted in [25], since there is no model mis-
match between the plant F and the model F used to define
ŵ, one has ŵ = w, hence opening the loop. More specifically,
from Fig. 1 and (2) one has

ŵ = −F(x,u) + F(x,u) + w = w . (8)

Therefore, by definition of the closed-loop maps, one
has �u[F,K] = M and �x[F,K](w) = F(x,M(w)) + w,
∀w ∈ �p. When w ∈ �p, one has �u[F,K](w) ∈ �p because
M ∈ Lp. Moreover M ∈ Lp and F ∈ Lp imply that the
operator w �→ x defined by the composition of the operators
w �→ (M(w),w) and F is in Lp as well. This is due to the
property that the composition of operators in Lp is in Lp.

We prove 2). Set, for short, �x = �x[F,C], �u =
�u[F,C], ϒx = �x[F,K], and ϒu = �u[F,K]. By assump-
tion, one has M = �u and since �u ∈ Lp also M ∈ Lp. By
definition, ϒu is the operator w �→ u and, from (8) and Fig. 1,
it coincides with M. Hence

�u = ϒu . (9)

4This operator always exists because F(x, u) is strictly causal. Hence ut
depends on the inputs ut−1:0 and can be computed recursively from past inputs
and xt :0—see formula (11).
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It remains to prove that ϒx = �x. Similar to [22], we proceed
by induction. First, we show that �x

0 = ϒx
0 , where, as defined

in Section I-B, �x
0 and ϒx

0 are the components of �x and ϒx

at time zero. Since f0 = 0 and w0 = x0, one has from (1) that
the closed-loop map w0 �→ x0 is the identity, irrespectively of
the controller. Therefore ϒx

0 = �x
0 = I . Assume now that, for

a positive j ∈ N we have ϒx
i = �x

i for all 0 ≤ i ≤ j. Since
(ϒx,ϒu) and (�x,�u) are closed-loop maps, from (2) they
verify

ϒx
j+1=Fj+1(ϒx

j:0, ϒ
u
j:0 ) + I, �x

j+1=Fj+1(�x
j:0, �

u
j:0 ) + I.

(10)
But, from (9), one has �u

j:0 = ϒu
j:0 and, by using the in-

ductive assumption, one obtains ϒx
j+1 = �x

j+1. This implies
K = C. �

Several comments are in order. First, Theorem 1 is about
nominal stability only as there is no model mismatch between
the plant model and the one used in the controller. We analyze
robust stability in Section IV. Second, it is well known that
many IMC architectures are sufficient for preserving stabil-
ity, both in the linear [24] and the nonlinear [25] case.5 It
is also known that in the LTI setting, IMC is also neces-
sary for preserving stability [35] and provides an alternative
to the Youla-Koucera parametrization [36]. In this respect,
Theorem 1 provides a necessary condition for preserving sta-
bility also for nonlinear systems. This result is perhaps not
surprising given that necessary and sufficient conditions for
stabilizing wide classes of input-output nonlinear models, in
the spirit of the Youla- Koucera parametrization, have been
derived since the 80’s [27], [29]. However, these controllers
are not conceived in the IMC form [24], [25], [26] and they
consider actuation and measurement disturbances, while our
setup allows for the presence of process noise.

The above insight is useful because the IMC structure fa-
cilitates the design and deployment of performance-boosting
policies. First, IMC controllers are deployed using the block-
diagram structure shown in Fig. 1. In equation form, for a
chosen operator M, one simply computes the control input
as follows:

ŵt = xt − ft (xt−1:0, ut−1:0) , (11a)

ut = Mt (ŵt :0 ) . (11b)

Second, Theorem 1 highlights that it is sufficient to search in
the space of operators M ∈ Lp for describing all and only
performance-boosting policies. While finding a parametriza-
tion of all operators M ∈ Lp might be prohibitive, we will
show in Section V that one can use NNs for describing broad
subsets of these operators. Moreover, the IMC structure lends

5Note, however, that IMC in [25] is developed in terms of continuous-
time nonlinear input-output models, for which the effect of process noise is
difficult to analyze. Moreover, the control objective is to track a reference
signal to the plant output, which raises the problem of approximating inverses
of nonlinear operators. In our work, we use instead discrete-time input-to-
state models and analyze the closed-loop maps from process noise to control
inputs and system states. Moreover, our goal is to solve optimal control rather
than tracking problems.

itself to the development of policies that enjoy a distributed
structure (see Section IV).

1) THE CASE OF LTI SYSTEMS WITH NONLINEAR COSTS
Consider the linear system (3) and let z denote the forward
time-shift operator. When the system is asymptotically sta-
ble, the classical Youla parametrization [36] states that all
linear state-feedback stabilizing control policies u = Kx can
be written as

u = Q(z)x − Q(z)

z
(Ax + Bu) Q(z) ∈ TFs , (12)

where Q(z) is the so-called Youla parameter. Here, TFs de-
notes the set of stable transfer matrices—that is, the set of
matrices whose scalar entries are stable transfer functions. The
class of linear control policies is globally optimal for standard
LQG problems, and it allows optimizing over Q ∈ TFs using
simple pole approximations and convex programming—we
refer to [37], [38] for state-of-the-art results. However, non-
linear policies can be significantly more performing when the
controller is distributed [39], or the cost function is nonlinear.
As an immediate corollary of Theorem 1, and in accordance
with the core contribution of [19] where the focus is on con-
tracting closed-loops, we have the following result for linear
systems controlled by nonlinear policies.

Corollary 1: Consider the linear system (3) and assume
that it is asymptotically stable. Then, all and only con-
trol policies that make the closed-loop system �p-stable are
expressed as

u = M
(

x − (Ax + Bu)

z

)
, (13)

where M ∈ Lp.
Proof: The proof follows from Theorem 1 upon realizing

that the asymptotic stability of system (3) implies that the
corresponding operator F is in Lp, for any p ≥ 1. �

In conclusion, as expected, the linear Youla parametrization
(12) is a special case of the proposed parametrization (13)
with M = Q and Q ∈ TFs.

2) RELATIONSHIPS WITH [22] AND NONLINEAR SLS
In [22], we provided a slight generalization of Theorem 1 and
the results in Section I by also considering unstable systems
x = F̃(x,u) + w for which a pre-stabilizing controller K′
exists, so that the overall policy is

u = K′(x) + M(ŵ) . (14)

By letting F(x,u) = F(x,K′(x) + u), and assuming that both
F and K′ lie in Lp, Theorem 1 coincides with Theorem 2
in [22]. However, when K′ �∈ Lp, Theorem 2 in [22] highlights
that M ∈ Lp may no longer be a necessary condition for
closed-loop �p-stability, while being still sufficient.

Moreover, as highlighted in [22], there is a deep link
between Theorem 1 and the SLS parametrization of sta-
bilizing controllers [30], [40]. The idea behind the SLS
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approach [30], [40] is to circumvent the difficulty of charac-
terizing stabilizing controllers, by instead directly designing
stable closed-loop maps. Let us define the set of all achievable
closed-loop maps for system F as

CL[F] = {(�x[F,K],�u[F,K]) | K is causal} , (15)

and the set of all achievable and stable closed-loop maps as

CLp[F] = {(�x,�u) ∈ CL[F] | (�x,�u) ∈ Lp} . (16)

Note that, if (�x,�u) ∈ CLp[F], then x = �x(w) ∈ �n
p and

u = �u(w) ∈ �m
p for all w ∈ �n

p. Based on Theorem III.3
of [30], and adding the requirement that the closed-loop maps
must belong to Lp, we summarize the main SLS result for
nonlinear discrete-time systems.

Theorem 2 Nonlinear SLS parametrization [30]): The fol-
lowing two statements hold true.

1) The set CLp[F] of all achievable and stable closed-loop
responses admits the following characterization:

CLp[F] = {(�x,�u)| (�x,�u) are causal , (17a)

�x = F(�x,�u) + I , (17b)

(�x,�u) ∈ Lp} . (17c)

2) For any (�x,�u) ∈ CLp[F], the operator �x is invert-
ible and the causal controller

u = K(x) = �u ((�x )−1(x)
)
, (18)

is the only one that achieves the stable closed-loop re-
sponses (�x,�u).

Theorem 2 clarifies that any policy K(x) achieving �p-
stable closed-loop maps can be described in terms of two
causal operators (�x,�u) ∈ Lp complying with the nonlinear
functional equality (17b). Therefore, the NOC problem admits
an equivalent Nonlinear SLS (N-SLS) formulation:

N-SLS: min
(�x,�u )

EwT :0 [L(xT :0, uT :0 )] (�)

s. t. xt = �x
t (wt :0 ) , ut = �u

t (wt :0 ) ,

(�x,�u) ∈ CLp[F] , t = 0, 1, . . .

According to Theorem 2, the constraint (�x,�u) ∈ CLp[F]
is equivalent to requiring that (�x,�u) are causal and verify
(17b)–(17c). The constraint (17b) simply defines the oper-
ator �x in terms of �u and it can be computed explicitly
because F is strictly causal. The main challenge is to com-
ply with (17c). Indeed, it is hard to generate �u ∈ Lp such
that the corresponding �x satisfies �x ∈ Lp. The paper [30]
suggests directly searching over �p-stable operators (�x,�u)
and abandoning the goal of complying with (17b) exactly.
One can then study robust stability when (17b) only holds
approximately as per Theorem IV.2 in [30]. However, with
the exception of polynomial systems [41], this way of pro-
ceeding may result in conservative control policies or fail to
produce a stabilizing controller. Instead, for the case of stable
or pre-stabilized systems, Theorem 1 can be seen as a way

of parametrizing all stabilizing controllers that circumvents
completely the problem of fulfilling (17b)–(17c).

IV. BEYOND CLOSED-LOOP STABILITY: HANDLING
MODEL UNCERTAINTY AND DISTRIBUTED
ARCHITECTURES
This section tackles the performance boosting problem (Prob-
lem 1) under more intricate real-world constraints beyond
just closed-loop stability. Firstly, Theorem 1 suffers from
requiring perfect plant knowledge for controller design. In
reality, ensuring closed-loop stability despite an imperfect
model is crucial. Secondly, control policies in large-scale
applications like power grids and traffic systems are inher-
ently distributed. This means they rely solely on local sensor
data and communication, posing significant challenges to
achieving network-level robustness and stability.

A. ROBUSTNESS AGAINST MODEL-MISMATCH
Let us denote the nominal model available for design as
F̂(x,u) and the real unknown plant as

F(x,u) = F̂(x,u) + �(x,u) , (19)

where � is a strictly causal operator representing the model
mismatch. Let δt (xt−1:0, ut−1:0) be the time representation of
the mismatch operator �. Since for each sequence of distur-
bances w ∈ �n and inputs u ∈ �m the dynamics represented
by (1) with ft (xt−1:0, ut−1:0) replaced by f̂t (xt−1:0, ut−1:0) +
δt (xt−1:0, ut−1:0) produces a unique state sequence x ∈ �n, the
equation

x = F(x,u) + w , (20)

defines again a unique transition operator F : (u,w) �→ x,
which provides an input-to-state model of the perturbed
system.

Here, we show that when � can be described by an Lp oper-
ator with finite gain, we can always design operators M with
sufficiently small Lp-gain that stabilize the real closed-loop
system. More specifically, letting γ� be the maximum Lp-gain
of the model mismatch �, it is possible to design controllers K
that comply with the following robust version of the stability
constraint (5b):

(�∗ [̂F + �,K]) ∈ Lp , ∗ ∈ {x,u} , ∀�| γ (�) ≤ γ� . (21)

This result, which is given in the next theorem, refers to the
control scheme in Fig. 2.

Theorem 3: Assume that the mismatch operator � in
(19) has finite Lp-gain γ (�). Furthermore, assume that the
operator F has finite Lp-gain γ (F). Then, for any M such
that

γ (M) < γ (�)−1(γ (F) + 1)−1 , (22)

the control policy given by

ŵt = xt − f̂t (xt−1:0, ut−1:0) , (23a)

ut = Mt (ŵt :0 ) , (23b)
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FIGURE 2. The closed-loop system when the nominal model ̂F(x, u) used
in the IMC controller and the real plant F(x, u) = ̂F(x, u) + �(x, u) differ by
the perturbation � ∈ Lp. Compared to Fig. 1 the blocks have been
rearranged to highlight the subsystems used in the small-gain argument
adopted in the proof of Theorem 3.

stabilizes the closed-loop system.
Proof: We first show that operators F and F verify

F(F(u,w),u) = F(u,w) − w . (24)

This follows by substituting x = F(u,w) in (20). We now
compute the Lp-gain of the operator 	1 : (u,w) �→ ŵ in the
right frame of Fig. 2:

ŵ = F(u,w) − F̂(F(u,w),u)

= F(F(u,w),u) − F̂(F(u,w),u) + w

= �(F(u,w),u) + w , (25)

where the first equality follows from (24). Using the defini-
tion of Lp-gain for the operator y = �(x,u) one has ||y||p ≤
γ (�)(||x||p + ||u||p), and, by using (25) and u = M(ŵ), one
obtains6

||ŵ|| ≤ γ (�)(||F(u,w)|| + ||u||) + ||w||
≤ γ (�)(γ (F)||w|| + γ (F)||u|| + ||u||) + ||w||
≤ (γ (�)γ (F) + 1)||w|| + γ (�)(γ (F) + 1)γ (M)||ŵ|| .

By gathering all the terms involving ||ŵ|| to the left-hand side
we obtain

(1 − γ (�)γ (M) (γ (F)+1))||ŵ|| ≤ (γ (�)γ (F)+1)||w|| .
Since (22) holds, we have that 1 − γ (�)γ (M)(γ (F) + 1) >
0, and hence

||ŵ|| ≤
(

γ (�)γ (F) + 1

1 − γ (�)γ (M) (γ (F) + 1)

)
||w|| . (26)

Next, we plug the upper bound (26) into the inequality ||u|| ≤
γ (M)||ŵ|| to obtain

||u|| ≤
(

γ (M) (γ (�)γ (F) + 1)

1 − γ (�)γ (M)(γ (F) + 1)

)
||w|| , (27)

6For improving the clarity of the proof, from here onwards, we omit the
subscript p of the signal norms.

and subsequently, we plug (27) into the inequality ||x|| ≤
γ (F)(||u|| + ||w||) to obtain

||x|| ≤
(
γ (F)

1 + γ (M) (1 − γ (�))

1 − γ (�)γ (M)(γ (F) + 1)

)
||w|| . (28)

The last step is to verify that the maps w → x and w → u
have a finite Lp-gain. This is done by checking that the gains
in (27) and (28) are positive values when the gain of M is
sufficiently small. Since (22) holds, the denominator in (27)
is positive. Since the numerator of (27) is always positive, we
conclude that the map w → u has an Lp-gain. Similarly for
(28), since (22) implies that γ (M)γ (�) < 1, we have that
both numerator and denominator are positive. This implies
that the map w → x has an Lp-gain, as desired. �

The robustness condition (22) highlights a trade-off be-
tween (i) the degree of tolerable uncertainty in the mismatch
between nominal and real dynamics, and (ii) the extent of
the set of stabilizing control policies that we are permitted to
optimize over. Specifically, (22) ensures that, for any model
mismatch � ∈ Lp, there always exists a range of admissible
gains for M such that the closed-loop is stable. This en-
ables one to freely learn over all appropriately gain-bounded
operators. Further note that Theorem 3 is not conservative
when � = 0—this is unlike the classical application of the
small-gain theorem [42] which would enforce that γ (K) <
(γ (F))−1 even when � = 0. Indeed, when the model is
fully known, the right-hand side of (22) diverges to infinity,
allowing the gain of M to be any finite value, although
without imposing an upper bound, and therefore recovering
the completeness result of Theorem 1. Last, we remark that
the relationships (27) and (28) formally quantify the extent to
which the model mismatch can deteriorate the amplification
of disturbances on the closed loop trajectories (x,u) for the
system, for a given policy. However, it remains open how
much the model uncertainty deteriorates the performance of
the optimal policy. Such questions have only been rigorously
answered for the linear-quadratic case, see, for instance, [43],
[44].

Remark 1 (Robust stability of nonlinear SLS): The au-
thors of [30] characterize robust stability of nonlinear SLS
against mismatch in satisfying the achievability constraint
(17b). Specifically, [30] focuses on the scenario where the
control policy is a mapping x → u in the form

w̃ = x − (�x − I)w̃ , (29)

u = �u(w̃) , (30)

where w̃ represent the internal state of the controller, for
some (�x,�u) ∈ Lp which are not assumed to perfectly com-
ply with (17b). Accordingly, the authors define a mismatch
operator

� = F(�x,�u) + I − �x . (31)

Then, Theorem IV.2 of [30] proves closed-loop stability as
long as γ (�) < 1. Since � measures the degree of violation
of the achievability constraint rather than the degree of model
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uncertainty, a robust stability analysis based on verifying
γ (�) < 1 tailored to the case F = F̂ + � may not be straight-
forward, and it is not attempted in [30]. For this case, instead,
Theorem 3 provides an upper bound on the admissible gains
for M; this is achieved by exploiting the IMC structure of the
policy (23), and bounding the effect of model uncertainty on
the closed-loop map for the ground-truth system.

B. DISTRIBUTED CONTROLLERS FOR LARGE-SCALE
PLANTS
When dealing with large-scale cyber-physical systems, one
may consider that the plant (1) is composed of a network
of N dynamically interconnected nonlinear subsystems. To
model this scenario, we introduce an undirected coupling
graph G = (V, E), where the nodes V = {1, . . . ,N} represent
the subsystems in the network, and the set of edges E encode
pairs of subsystems {i, j} that are dynamically interconnected
through state variables. Specifically, the dynamics of each
subsystem i ∈ V is

x[i]
t = f [i]

t (x[Ni]
t−1:0, u[i]

t−1:0) + w
[i]
t , t = 1, 2, . . . (32)

where state and input of each subsystem i ∈ V at time t =
1, 2, . . . are denoted by x[i]

t ∈ R
ni and u[i]

t ∈ R
mi respec-

tively, and the initial state is x[i]
0 ∈ R

ni . In operator form we
have

x[i] = F[i](x[Ni],u[i] ) + w[i], (33)

where F[i] : �nNi × �mi → �ni . Note that, by stacking the sub-
system dynamics in (32) together, we recover a system in
the form (1), where xt = coli∈V(x[i]

t ) ∈ R
n, ut = coli∈V(u[i]

t ) ∈
R

m, and wt = coli∈V(w[i]
t ) ∈ R

n.
When controlling networked systems in the form (33), a

common scenario is that the local feedback controller u[i]
t can

only access information made available by its neighbors ac-
cording to a communication network with the same topology
of G. This requirement translates into imposing the follow-
ing additional constraint to the performance-boosting problem
(Problem 1):

u[i] = K[i](x[Ni] ), ∀i ∈ V . (34)

The challenge becomes to parametrize only those stabilizing
policies that are distributed according to (34). This can be
achieved by exploiting the IMC controller architecture (11)
in combination with the network sparsity of F highlighted
in (33). Let us consider, for example, the networked plant
of Fig. 3, where u[i] depends on the local disturbance re-
constructions ŵ[i] only, that is, u[i] = M[i](ŵ[i] ). In order
to reconstruct ŵ[1], agent i = 1 needs to evaluate the local
dynamics F[1](x[1], x[3],u[1]); this, in turns, requires a mea-
surement of the state x[3] over time. Repeating this reasoning
for the agents i = 2 and i = 3, one obtains an overall con-
trol policy K(x) whose agent-wise components are computed
relying on measurements from neighboring subsystems only,
thus complying with (34). We formalize this reasoning in the
next proposition.

FIGURE 3. Example of networked dynamics (33) and decentralized IMC
controller for agent i = 1.

Proposition 1: Let graph G = (V, E) describe the topology
of a plant F as per (33). Consider an IMC control pol-
icy (11) where the operator M ∈ Lp is decentralized, that
is, M[i](ŵ) = M[i](ŵ[i] ) for every agent i ∈ V. Then, the
closed-loop system is �p-stable and the corresponding control
policy u = K(x) is distributed according to (34).

Proof: Since M ∈ Lp, the closed-loop system is �p-stable
by Theorem 1. By (33), we have ŵ[i] = x[i] − F[i](x[Ni],u[i] ).
Hence, agent i only needs measurements of the neighboring
states according to G and local past inputs, thus complying
with (34). �

The result of Proposition 1 can be extended to more com-
plex cases. First, one can use local operators M[i] ∈ Lp

that, besides ŵ[i], have access to disturbance reconstruc-
tions ŵ[ j] or control variables u[ j] computed at locations
j �= i. While these architectures can be beneficial, e.g. for
counteracting disturbances affecting other subsystems before
they propagate to the subsystem i through coupling, they
require additional communication channels {i, j} if j �∈ Ni.
Moreover, one has to use local operators M[i] guarantee-
ing that the whole operator M belongs to Lp. To this
purpose, in general, it is not enough that M[i] ∈ Lp be-
cause the dependency on ŵ[ j] and u[ j] for j �= i can induce
loop interconnections that can destabilize the closed-loop
system. Classes of local operators M[i] yielding M ∈ Lp

have been proposed in [45], [46] by using dissipativity
theory.

V. LEARNING TO BOOST PERFORMANCE USING
UNCONSTRAINED OPTIMIZATION
Leveraging the theoretical results of previous sections, we
reformulate the performance-boosting problem in a form that
facilitates optimizing by automatic differentiation and un-
constrained gradient descent. This enables the use of highly
flexible cost functions for complex nonlinear optimal control
tasks. By design, the proposed approach guarantees closed-
loop stability throughout the optimization process. We assess
the effectiveness of the proposed methodology in achiev-
ing optimal performance through numerical experiments, in
Section VI.
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A. IMC-BASED REFORMULATION OF PERFORMANCE
BOOSTING
The main value of Theorem 1 is that it enables reformulating
Problem 1 as follows.

IMC reformulation of the performance-boosting problem:

min
M∈Lp

EwT :0 [L(xT :0, uT :0 )] (35a)

s. t. xt = ft (xt−1:0, ut−1:0) + wt , x0 = w0, (35b)

ut = Mt (wt :0) , t = 1, 2, . . . . (35c)

Indeed, (6) corresponds to (35b)–(35c). If the exact dynamics
ft in (35b) is not known, it must be simply replaced by the
nominal model f̂t .

The reformulation (35) offers significant computational ad-
vantages as compared to Problem 1. In the classical linear
quadratic case,7 (35) becomes strongly convex in M—
enabling to use efficient convex optimization for finding a
globally optimal solution [37], [40], [47], [48], [49]. In the
general nonlinear case, searching over nonlinear operators
M ∈ Lp remains significantly easier than tackling Problem 1
directly. Indeed, the set K of controllers K(·) complying with
(5b) is, in general, difficult to parametrize. This is mainly
because, given two stabilizing policies K1,K2, their convex
combinations K3 = γK1 + (1 − γ )K2 with γ ∈ [0, 1] and
their cascaded composition K4 = K2(�x[F,K1]) do not re-
sult in stabilizing policies, in general; these issues are very
well-known for the special case of linear systems [47], [50].
Hence, it is difficult to parameterize stabilizing policies, for
instance, by composing or summing together base stabilizing
operators. Instead, thanks to Lp being convex and closed un-
der composition, there exist methods for parametrizing rich
subsets of Lp through free parameters θ ∈ R

d , where d ∈ N

is the number of scalar parameters, that is, to define operators
M(θ ) such that

M(θ ) ∈ Lp, ∀θ ∈ R
d . (36)

This allows turning (35) into an unconstrained optimization
problem over θ ∈ R

d .
The last issue to be addressed is the computation of the av-

erage in (35a) that, as noticed before, is generally intractable.
This is usually circumvented by approximating the exact av-
erage with its empirical counterpart obtained using a set of
samples {ws

T :0}S
s=1 drawn from the distribution DT :0. One then

obtains the finite-dimensional optimization problem:

min
θ∈Rd

1

S

S∑
s=1

L(xs
T :0, us

T :0 ) (37a)

s. t. xs
t = ft (x

s
t−1:0, us

t−1:0) + ws
t , ws

0 = xs
0 , (37b)

us
t = Mt (θ )(ws

t :0) , t = 0, 1, 2, . . . , (37c)

where xs
T :0 and us

T :0 are the inputs and states obtained when
the disturbance ws

T :0 is applied. While in this work we only

7That is, when ft and M are linear and L is quadratic positive definite.

consider the empirical cost in the optimization problem (37a),
the closed-loop performance when faced with out-of-sample
noise sequences is further investigated in [51].

Finally, we highlight that (37b) and (37c) can be seen as
the equations of the layer t of a neural network with T layers.
Specifically, we can interpret the layer t of this neural net-
work to have inputs (xs

t−1:0, us
t−1:0,w

s
t :0 ) and outputs (xs

t , us
t ).

Under this lens, the weights to be learned across all layers
are the θ ∈ R

d defining the control policy (37c). When Mt ,
for t = 0, 1, . . . is sufficiently smooth, the absence of con-
straints on θ enables the use of powerful packages, such as
TensorFlow [52] and PyTorch [53], leveraging automatic dif-
ferentiation and backpropagation for optimizing the controller
through gradient descent.

B. FREE PARAMETERIZATIONS OF L2 SUBSETS
As highlighted in Section V-A, the possibility of obtaining
effective controllers by solving (37) critically depends on
our ability to parametrize Lp operators. The main obstacle
is that the space Lp is infinite-dimensional. Hence, for im-
plementation, one usually restrict the search in subsets of Lp

described by finitely many parameters. When linear systems
are considered, one can search over Finite Impulse Response
(FIR) transfer matrices M =∑N

i=0 M[i]z−i ∈ TFs and then
optimize over the finitely many real matrices M[i]. Less and
less conservative solutions can be obtained by increasing the
FIR order N . However, the FIR approach limits the search to
linear control policies.

Recently, [31], [32], [54] have proposed finite-dimensional
DNN approximations of classes of nonlinear L2 operators. In
the sequel we briefly review the Recurrent Equilibrium Net-
work (REN) models proposed in [32]. An operator M : �n →
�m is a REN if the relationship u = M(ŵ) is recursively
generated by the following dynamical system:

⎡⎢⎣ξtzt

ut

⎤⎥⎦ =

W︷ ︸︸ ︷⎡⎢⎣A1 B1 B2

C1 D11 D12

C2 D21 D22

⎤⎥⎦
⎡⎢⎣ ξt−1

σ (zt )

wt

⎤⎥⎦+

bt︷ ︸︸ ︷⎡⎢⎣bx,t

bz,t

bw,t

⎤⎥⎦ , ξ−1 = 0 ,

(38)
where ξt ∈ R

q, vt ∈ R
r , bx,t , bz,t , bw,t ∈ �∞8 and σ : R →

R—the activation function—is applied element-wise. Further,
σ (·) must be piecewise differentiable and with first deriva-
tives restricted to the interval [0,1]. As noted in [32], RENs
subsume many existing DNN architectures. In general, RENs
define deep equilibrium network models [55] due to the im-
plicit relationships defining zt in the second block row of (38).
By restricting D11 to be strictly lower-triangular, the value of
zt can be computed explicitly, thus significantly speeding-up
computations [32]. To give an example of the expressivity of
(38), by suitably choosing the size and zero pattern of matrices

8This is slightly different from the original REN model, where these sig-
nals [32] are assumed to be constant.
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in (38), RENs can provide nonlinear systems in the form

ξt = Âξt−1 + B̂ NNξ (ξt−1, ŵt )

ut = Ĉξt + D̂ NNu(ξt−1, ŵt )

where Â, B̂, Ĉ, D̂ are arbitrary matrices of suitable dimensions
and NN�, � ∈ {ξ, u}, are neural networks of depth L given by
the relations

z̃�0,t = [ξ�
t−1, ŵ

�
t ]�,

z̃�k+1,t = σ (W �
k z̃�k,t + b�k ), k = 0, . . . L − 1

where W �
k and b�k are the layer weights and biases, respec-

tively, and z̃�L,t is the NN output.
For an arbitrary choice of W and bt , the map M induced

by (38) may not lie in L2. The work [32] provides an explicit
smooth mapping � : Rd → R

(q+r+m)×(q+r+n) from uncon-
strained training parameters θ ∈ R

d to a matrix W = �(θ ) ∈
R

(q+r+m)×(q+r+n) defining (38), with the property that the
corresponding operator M(θ ) lies in L2 by design when
bt = 0.9 This approach can be easily generalized by including
vectors bt , t = 1, . . . ,T in the set of trainable parameters and
assuming bt = 0 for t > T .

Recently, free parameterizations of continuous-time L2 op-
erators through RENs and port-Hamiltonian systems have
been also proposed in [54] and [56], respectively.

Remark 2: The work [19] proves that RENs in the form
(38) are universal approximators of all contracting and Lips-
chitz operators when the parameters (W, b) do not vary with
time. To the best of the authors’ knowledge, it is still unknown
if the class of RENs in L2, parametrized by W = �(θ ) where
W ∈ R

(q+r+m)×(q+r+n), can approximate any operator in L2

arbitrarily well. Our work motivates future research efforts
to discover new parametrizations of operators in Lp with
stronger and provable approximation capabilities.

To conclude, we clarify that RENs can be directly em-
bedded into the performance-boosting optimization problem
(37a)–(37c). This is obtained by substituting the input (37c)
with the recursions (38), where W = �(θ ) according to the
mapping proposed in [32].

VI. NUMERICAL EXPERIMENTS: THE MAGIC OF THE COST
In this section, we test the flexibility of performance boost-
ing by considering cooperative robotics problems. Firstly,
we validate the guarantees of the design approach by show-
ing that closed-loop stability is preserved during and after
training—both when the system model is known and when
it is uncertain. Secondly, we exploit the freedom in selecting
the cost L(xT :0, uT :0 ) to include appropriate terms aimed at
promoting complex closed-loop behaviors.

In all the examples, we consider two point-mass vehicles,
each with position p[i]

t ∈ R
2 and velocity q[i]

t ∈ R
2, for i =

9Furthermore, RENs enjoy contractivity – although the theoretical results
of this paper do not rely on this property.

FIGURE 4. Mountains—Closed-loop trajectories before training (left) and
after training (middle and right) over 100 randomly sampled initial
conditions marked with ◦. Snapshots taken at time-instants τ. Colored
(gray) lines show the trajectories in [0, τi ] ([τi, ∞)). Colored balls (and their
radius) represent the agents (and their size for collision avoidance).

1, 2, subject to nonlinear drag forces (e.g., air or water resis-
tance). The discrete-time model for vehicle i is[

p[i]
t

q[i]
t

]
=
[

p[i]
t−1

q[i]
t−1

]
+ Ts

⎡⎣ q[i]
t−1

(m[i] )−1
(
−C(q[i]

t−1) + F [i]
t−1

)⎤⎦ ,
(39)

where m[i] > 0 is the mass, F [i]
t ∈ R

2 denotes the force con-
trol input, Ts > 0 is the sampling time and C[i] : R2 → R

2

is a drag function given by C[i](s) = b[i]
1 s − b[i]

2 tanh(s), for
some 0 < b[i]

2 < b[i]
1 . Each vehicle must reach a target position

p[i] ∈ R
2 with zero velocity in a stable way. This elementary

goal can be achieved by using a base proportional controller

F ′[i]
t = K ′[i]( p̄[i] − p[i]

t ) , (40)

with K ′[i] = diag(k[i]
1 , k[i]

2 ) and k[i]
1 , k[i]

2 > 0. The overall dy-
namics ft (xt−1:0, ut−1:0) in (1) is given by (39)–(40) with

F [i]
t = F ′[i]

t + u[i]
t , (41)

where xt = (p[1]
t , q[1]

t , p[2]
t , q[2]

t ) and ut = (u[1]
t , u[2]

t ) is a
performance-boosting control input to be designed. As per (1),
we consider additive disturbances affecting the system dy-
namics. Thanks to the use of the prestabilizing controller (40),
one can show that F(u,w) ∈ L2.

The goal of the performance-boosting policy is to enforce
additional desired behaviors, on top of stability, which are
specified in each of the following subsections. In all cases,
we parametrize the operator M(θ ) ∈ L2 as a REN, see (38).
Appendix A presents all the implementation details, such as
parameter values and exact definitions of the cost functions.
Appendix B compares the performance of our methods and
the corresponding guarantees with two related baseline ap-
proaches. The code to reproduce our examples as well as
various movies are available in our Github repository.10

A. ROBUST STABILITY PRESERVATION DURING
OPTIMIZATION
We consider the scenario mountains in Fig. 4 where each
vehicle must reach the target position in a stable way while

10https://github.com/DecodEPFL/performance-boosting_controllers.git
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FIGURE 5. Mountains—Closed-loop trajectories after 25%, 50% and 75%
of the total training whose closed-loop trajectory is shown in Fig. 4. Even if
the performance can be further optimized, stability is always guaranteed.

avoiding collisions between themselves and with two grey
obstacles. Each agent is represented with a circle that indicates
its radius for the collision avoidance specifications. When us-
ing the base controller (40), the vehicles successfully achieve
the target, however, they do so with poor performance since
collisions are not avoided, as shown in Fig. 4(a).

We select a loss L(xT :0, uT :0 ) as the sum of stage costs
l (xt , ut ), that is, L(xT :0, uT :0 ) =∑T

t=0 l (xt , ut ) with

l (xt , ut ) = ltra j (xt , ut ) + lca(xt ) + lobs(xt ) , (42)

where ltra j (xt , ut ) =
[
xT

t uT
t

]
Q
[
xT

t uT
t

]T
with Q � 0 pe-

nalizes the distance of agents from their targets and the control
energy, lca(xt ) and lobs(xt ) penalize collisions between agents
and with obstacles, respectively.

In order to train the performance-boosting controller, we
solve (37), using a REN (38) of dimension q = r = 8. The
training data consists of a set of 100 initial positions, i.e.,
we set w0 = ((px

0)[1], (py
0)[1], 0, 0, (px

0)[2], (py
0)[2], 0, 0) and

wt = 0, for t > 0, where px and py denote the x and y co-
ordinates of the vehicles in the Cartesian plane, respectively.
Initial positions are sampled from a Gaussian distribution
around the nominal initial condition. Fig. 4(b) and (c) shows
the nominal and training initial conditions marked with ‘×’
and ‘◦’, respectively, and three test trajectories after the
training of the IMC controller. The trained control policies
avoid collisions and achieve optimized trajectories thanks to
minimizing (42).

1) EARLY STOPPING OF THE TRAINING
We validate the stability-by-design property of our IMC con-
trol policies. We consider the scenario mountains as above
but where the training process is interrupted before achieving
a local minimum, as per the one in Fig. 4. In particular, we
stop the optimization algorithm after 25%, 50%, and 75%
of the total number of epochs. The obtained trajectories are
shown in Fig. 5. We observe that even if the performance is
not optimized, closed-loop stability is always guaranteed.

2) MODEL MISMATCH
We test our trained IMC controller when considering model
mismatch on the system. In particular, we assume that the
true vehicles have an incertitude over the mass of ±10%,

FIGURE 6. Mountains—Closed-loop trajectories after training. (Left and
middle) Controller tested over a system with mass uncertainty (-10% and
+10%, respectively). (Right) Trained controller with safety promotion
through (45). Training initial conditions marked with ◦. Snapshots taken at
time-instants τ. Colored (gray) lines show the trajectories in [0, τi ]
([τi,∞)). Colored balls (and their radius) represent the agents (and their
size for collision avoidance).

and we apply IMC control policies embedding the nominal
system with the nominal mass value. Fig. 6(a) and (b) validate
the robust �2-stability of the closed-loop trajectories when
the vehicles are lighter and heavier, respectively. Theorem 3
suggests that, in this case, the gain of M may be suffi-
ciently low to counteract the effect of model uncertainty. Note,
however, that checking the sufficient condition (22) requires
computing an upper bound on γ (�)—a cumbersome task
for general nonlinear systems. Nonetheless, Theorem 3 en-
sures that, in practical implementation, we can always reduce
γ (M) enough to eventually meet (22).

B. BOOSTING FOR SAFETY AND INVARIANCE
CERTIFICATES
A challenging task in many control applications is to deal with
stringent safety constraints on the state variables. Ideally, one
would directly add the constraint that

xt ∈ C ,∀t = 0, 1, . . . , (43)

in the IMC-based performance-boosting problem (35), where
C ⊆ R

n defines a safety region. Unfortunately, (43) generally
results in intractable constraints over M. Indeed, it may be
challenging to even verify that (43) holds for a certain M
due to the infinite-horizon requirement and the involved non-
linearities. Many state-of-the-art approaches for guaranteeing
safety hinge on either predictive safety filters [57], [58] or
Control Barrier Functions (CBFs) [59], [60]. Safety filters are
used during deployment: they override the control input u =
M(ŵ) with a different (suboptimal) control variable when
deemed necessary for guaranteeing safety. Instead, CBFs can
be used for safety verification of a given policy, as they allow
characterizing C as a forward invariant set based on a safety-
set-defining function h(x) : X → R satisfying h(x) ≥ 0 for all
x ∈ C. Certifying the forward invariance of C translates into
determining if h(x) is a CBF through verification of some
safety conditions.11 In particular, one can verify that, for any

11An exact definition of CBFs for the discrete-time can be found in [60];
for a more general discussion on CBFs we refer the reader to [59].
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xt ∈ C, if there exists an input ut giving xt+1 such that it holds

h(xt+1) − h(xt ) + γ h(xt ) ≥ 0 , (44)

where 0 < γ ≤ 1, then h(x) is a CBF.
While optimizing over M such that (43) holds by de-

sign remains an open challenge, we aim to promote forward
invariant sets by shaping the cost to include soft safety speci-
fications over a horizon of length T . In particular, the new cost
term penalizes violations of (44) as per

Linv =
T −1∑
t=0

ReLU (h(xt ) − h(xt+1) + γ h(xt )) . (45)

We consider the mountains scenario again and add the re-
quirement that (py

t )[i] < ( p̄y)[i] + 0.1 for each vehicle i = 1, 2
and every t = 0, 1, . . ., where py

t denotes the y-coordinate
of each center-of-mass position on the Cartesian plane. In
other words, we only allow an overshoot of 0.1in the vertical
direction with respect to the target position for each vehicle.
By defining h(xt ) =∑2

i=1(( p̄y)[i] + 0.1 − (py
t )[i] ) we add the

term (45) to the loss function (37a). Upon training without
including Linv in the cost, the masses violate the constraints,
on average, on 67.49% of the time over 100 runs—typical tra-
jectories are shown in Fig. 4. The violation ratio is decreased
to 5.43% when Linv is included, as shown in Fig. 6(c), where
the gray area indicates the unsafe region to be avoided by the
vehicles. Note that shaping the cost through Linv is also benefi-
cial if one implements an online safety filter such as [57], [58]
during deployment. This is because penalizing Linv drastically
decreases constraint violations of the closed-loop system, and
hence, the suboptimal online intervention of the safety filter
would be much less frequent.

C. BOOSTING FOR TEMPORAL LOGIC SPECIFICATIONS
The success of many policy learning algorithms, e.g., in RL,
is highly dependent on the choice of the reward functions for
capturing the desired behavior and constraints of an agent.
When tasks become complex, specifying loss functions that
are the sum over time of stage costs can be restrictive. For in-
stance, consider the case of an agent that must optimally visit
a set of locations. A loss function composed of a stage-cost
summed over time—that is, the one considered in dynamic
programming and classical optimal control [3], [61]—cannot
easily capture this task, as it would need a-priori information
about the optimal timings to visit each location. To overcome
this problem, one could use more complex loss functions, as
per those derived from temporal logic formulations. In partic-
ular, truncated linear temporal logic (TLTL) is a specification
language leveraging a set of operators defined over finite-
time trajectories [62], [63]. It allows incorporating domain
knowledge, and constraints (in a soft fashion) into the learning
process, such as “always avoid obstacles”, “eventually visit
location a”, or “do not visit location b until visiting location
a”. Then, using quantitative semantics one can automatically
transform TLTL formulae into real-valued loss functions that

FIGURE 7. Waypoint-tracking—Closed-loop trajectories before training
(left) and after training (middle and right). Snapshots taken at
time-instants τ. Colored (gray) lines show the trajectories in [0, τi ]
([τi, ∞)). Colored balls (and their radius) represent the agents (and their
size for collision avoidance).

are compositions of min and max functions over a finite period
of time [62], [63].

To test the efficacy of TLTL specifications for shaping
complex stable closed-loop behavior, we consider the scenario
waypoint-tracking, shown in Fig. 7, where the two
vehicles have to visit a sequence of waypoints while avoiding
collisions between them and the gray obstacles. The blue
vehicle’s goal is to visit gb, then ga and then gc, while the goal
for the orange vehicle is to visit the waypoints in the following
order: gc, gb and ga. Following [62], the loss formulation for
the orange agent is translated into plain English as “Visit gc

then gb then ga; and don’t visit gb or ga until visiting gc; and
don’t visit ga until visiting gb; and if visited gc, don’t visit gc

again; and if visited gb, don’t visit gb again; and always avoid
obstacles; and always avoid collisions; and eventually state at
the final goal. ” Its mathematical formulation can be found in
Appendix A-2.

Fig. 7 shows the waypoint-tracking scenario before
and after the training of a performance-boosting controller. As
described in Section V-B, we use a REN with q = r = 32 for
approximating the L2 operator M. Furthermore, we allow for

a time-varying bias of the form b�
t =

[
01×q 01×r b�

w,t

]
,

in (38), with bw,t = 0 for t > T . While the system always
starts at the same initial condition indicated with ‘◦’, the data
consists of disturbance sequences wT :0 with fixed w0 and wT :1

as i.i.d. samples drawn from a Gaussian distribution with zero
mean and standard deviation of 0.01. Our result highlights
the power of complex costs—expressed through the TLTL
loss function—which promotes vehicles visiting the prede-
fined waypoints in the correct order while avoiding collisions
between them and with the obstacles.

VII. CONCLUSION
Embedding safety and stability emerges as a crucial challenge
when control systems are equipped with high-performance
machine learning components. This work aims to contribute
to this rapidly developing field by uncovering the theoretical
and computational potential of IMC for safely boosting the
performance of closed-loop nonlinear systems with machine
learning models such as DNNs.

The results of this work open up several future research di-
rections. First, motivated by the recent results of [51], it would
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be relevant to apply statistical learning theory to rigorously
assess the generalization capabilities of performance-boosting
controllers in uncertain environments, with uncertain models,
and over extended time frames. Second, drawing on insights
from [64], integrating extensive RL-based offline learning
with real-time adjustments similar to MPC presents a promis-
ing approach. Third, within the IMC framework, there is a
significant opportunity to develop richer parametrizations of
stable dynamical systems in Lp, and to theoretically prove
their approximation capabilities. Lastly, building upon [65],
it is interesting to explore how learning-based IMC meth-
ods could generate new optimization algorithms with formal
guarantees for tackling complex optimal control and machine
learning tasks.

APPENDIX
A. IMPLEMENTATION DETAILS FOR THE NUMERICAL
EXPERIMENTS IN SECTION VI
We set m[i] = b[i]

1 = k′[i]
1 = k′[i]

2 = 1 and bi
2 = 0.5 as the pa-

rameters for each vehicle i, in the model (39) with the
pre-stabilizing controller (40). The collision-avoidance radius
of each agent is 0.5.

1) MOUNTAINS SCENARIO
As shown in Fig. 4, the vehicles start at p[1]

0 = (−2,−2) and
p[2]

0 = (−2, 2), and their goal is to go to the target positions
p̄[1] = (2, 2) and p̄[2] = (−2, 2), respectively. The training
data consists of 100 initial positions sampled from a Gaus-
sian distribution around the initial position with a standard
deviation of 0.5.

Let x̄ = (x̄[1], x̄[2]) with x̄[i] = ( p̄[i], 02). The terms of the
cost function (42) are defined as follows:

ltra j (xt , ut )= (xt − x̄)�Q̃(xt − x̄) + αuu�
t ut

lca(xt )=
{
αca
∑N

i=0
∑

j, i �= j (d
i, j
t +ε)−2 if di, j

t ≤ Dsafe ,

0 otherwise ,

where Q̃ � 0 and αu, αca > 0 are hyperparameters, di, j
t =

|p[i]
t − p[ j]

t |2 ≥ 0 denotes the distance between agent i and
j, ε > 0 is a fixed positive small constant such that the loss
remains bounded for all distance values and Dsafe is a safe
distance between the center of mass of each the agent; we set
it to 1.2.

Motivated by [66], we represent the obstacles based on a
Gaussian density function

η(z;μ,	)= 1

2π
√

det(	)
exp

(
−1

2
(z − μ)�	−1 (z − μ)

)
,

with meanμ ∈ R
2 and covariance	 ∈ R

2×2 with	 � 0. The
term lobs(xt ) is given by

lobs(xt ) = αobs

2∑
i=0

(
η

(
p[i]

t ;
[

2.5

0

]
, 0.2 I

)

TABLE 1. Predicates Used in the TLTL Formulation of (47)

+ η

(
p[i]

t ;
[
−2.5

0

]
, 0.2 I

)

+ η

(
p[i]

t ;
[

1.5

0

]
, 0.2 I

)

+ η

(
p[i]

t ;
[
−1.5

0

]
, 0.2 I

))
. (46)

For the hyperparameters, we set αu = 2.5 × 10−4, αca = 100,
αobs = 5 × 103 and Q = I4. We use stochastic gradient de-
scent with Adam to minimize the loss function, setting a
learning rate of 1 × 10−4. We train for 5 × 103 epochs with
one trajectory per batch size.

2) WAYPOINT-TRACKING SCENARIO
As shown in Fig. 4, the vehicles start at p[1]

0 = (−2, 0) and
p[2]

0 = (0, 0). The goal points ga, gb and gc are located at
(−2,−2), (0,2) and (2,−2), respectively. To describe the
TLTL loss, let us define, for each vehicle, the following
functions of time:
� dgi

t , for i = 1, 2, 3, is the distance between the vehicle
and the goal point gi;

� doi
t , for i = 1, 2, is the distance between the vehicle and

the ith obstacle;
� dcoll

t is the distance between the two vehicles;
where g1, g2 and g3 are the waypoints in the correct visiting

order, for each vehicle. Following the notation of [62], the
temporal logic form of the cost function, for each vehicle, is(
ψg1 Tψg2 Tψg3

) ∧ (¬ (ψg2 ∨ ψg3

)
Uψg1

) ∧ (¬ψg3 Uψg2

)
∧
⎛⎝ ∧

i=1,2,3

�
(
ψgi ⇒ ©�¬ψgi

)⎞⎠ ∧
⎛⎝∧

i=1,2

�ψoi

⎞⎠
∧ �ψcoll ∧ ♦�ψg3 (47)

where ψ are predicates defined in Table 1 , and robs = 1.7
and rr = 0.5 are the radii of the obstacles and vehicles, respec-
tively.12 The Boolean operators ¬, ∨, and ∧ stand for negation
(not), disjunction (or), and conjunction (and). The temporal
operators T, U, ♦, and � stand for ‘then’, ‘until’, ‘eventually’,
and ‘always’. Mathematically, each term can be automatically

12Note that in the waypoint-tracking scenario, we do not model the obsta-
cles with a Gaussian density function.
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translated following [62], [63]. For instance, �ψcoll translates
into

min
t∈[0,T ]

(drob
t − 2rrob),

and �(ψgi ⇒ ©�¬ψgi ) translates into

min
t∈[0,T ]

max

(
−(0.05 − dgi

t ) , min
t̃∈[t+1,T ]

−(0.05 − dgi
t )

)
.

The full mathematical expression of (47), which can
be obtained following [62], is implemented in our
Github repository.

We also add a small regularization term for promoting that
the vehicles stay close to the end target point, which reads
αreg‖xt − x̄‖2, with αreg = 1 × 10−4. We use stochastic gradi-
ent descent with Adam to minimize the loss function, setting
a learning rate of 5 × 10−4. We train for 3000 epochs with a
single trajectory per batch size.

B. COMPARISON OF PERFORMANCE-BOOSTING
CONTROLLERS WITH OTHER BASELINES
We compare the performance of our proposed controllers
with two baseline approaches for the scenario mountains
presented in Section VI-A. In both cases, the vehicles are
equipped with the base proportional controller (40) which is
able to steer the agents towards the target position in a stable
way. As described in Section VI-A, improving the perfor-
mance means vehicles must avoid collisions with each other
and with obstacles.

The first baseline we consider is a control policy derived
by solving an optimization problem in a receding-horizon
manner. This optimization problem is defined over the set
of control inputs that ensure collision avoidance within the
horizon.

The second baseline is to directly parametrize the entire
control policy u = K(x) as a recurrent neural network, that
is, without adopting the IMC architecture of Fig. 1 train a
control policy u = K(x) directly parametrized as a recurrent
neural network optimizing the cost L(xT :0, uT :0 ) defined in
Section VI-A. Note that this approach does not guarantee the
stability of the resulting closed-loop system.

1) ONLINE-OPTIMIZATION USING BARRIER FUNCTIONS
OVER THE BASE CONTROLLER
A common approach in robotics for avoiding collisions and
unsafe regions is to use control barrier functions [59], [60].

This requires online optimization for computing the system
inputs. Specifically, we consider the approach in [60] for guar-
anteeing that the safe region is forward invariant. The online
optimization problem reads as

u∗
t = arg min

ut ,ut+1
u�

t ut (48a)

s.t.xt = (p[1]
t , q[1]

t , p[2]
t , q[2]

t ) , (48b)

ut = (u[1]
t , u[2]

t ) , (39), (40), (41) , (48c)

FIGURE 8. Mountains—Closed-loop trajectories when using the online
policy given by (48). Snapshots of three trajectories starting at different
test initial conditions.

h(xt+1) − h(xt ) + γ h(xt ) ≥ 0 , (48d)

h(xt+2) − h(xt+1) + γ h(xt+1) ≥ 0 , (48e)

where 0 < γ ≤ 1 and u∗
t is the safety-preserving input to the

system. The barrier function h : Rn → R characterizes the
region C = {x ∈ R

n : h(x) ≥ 0} in the state space where no
collisions between agents nor with the obstacles occur. To this
purpose, we define

h(x) =
(
|p[1] − p[2]|2 − 4 r2

agent

)
+

2∑
i=1

4∑
j=1

(
|p[i] − pobs j |2 − r2

obs

)
,

which is positive in the safe region. The radius of each agent
is ragent = 0.5, while robs = 1.4 denotes the radius of two ob-
stacles, modeled as disks. The center of each disk is given by
pobs j ∈ R

2 and is the mean of the Gaussian density functions
used for defining lobs in (46). In the absence of collisions at
time t , the constraint (48e) forces the agents to stay in the safe
region at time t + 1 as well.

Fig. 8 shows three closed-loop trajectories of the agents
when starting from different initial conditions. When the
initial positions are symmetric with respect to the y-axis
(Fig. 8(a)), the optimization problem (48) cannot find an input
u∗

t allowing both agents to pass through the narrow corridor,
and the agents stop without reaching the target. This is due
to the reactive nature of CBFs, which do not account for
the behavior of the system nor prioritize target reaching. To
provide an objective performance assessment, we compare the
quadratic cost term on the state, i.e. we evaluate the Euclidean
distance to the target using

L̃(xT :0, uT :0 ) =
T∑

t=0

(xt − x̄)�(xt − x̄) , (49)

over 20 test initial conditions (sample trajectories are dis-
played in Fig. 8(b) and (c)). The average cost incurred by
the control law is 25.81, while it is 20.94 when using our
approach. We highlight that when the vehicles are close
enough to their respective target positions, one has u�t = 0,
and the system inherits the stability properties due to the base
controller.
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FIGURE 9. Mountains—Three different closed-loop trajectories after
training a REN controller without L2 stability guarantees over 100
randomly sampled initial conditions marked with ◦. Colored (gray) lines
show the trajectories in (after) the training time interval.

2) A RECURRENT NEURAL NETWORK CONTROLLER
We replace the controller in Fig. 1 by a REN where the train-
able parameters are the weights W and the time-invariant bias
bt = b in (38). Note that we do not constrain the REN to be
an L2 operator, i.e., we do not use the mapping � described
in Section V-B for redefining the trainable parameters. The
model consists of 861 parameters which are optimized for
minimizing the cost L(xT :0, uT :0 ), using the same initial con-
ditions as in the experiments of Section VI-A. Fig. 9 shows
three closed-loop trajectories of the agents when starting from
different initial positions. Note that the targets are no longer
the equilibria of the closed-loop system, and the vehicles
move away from the targets after an initial reaching phase.
The cost (49) incurred by this control law is 26.60, while it is
20.94 when using a performance-boosting controller (where
the REN representing the operator M has 864 parameters,
i.e., only three more than the above REN controller).
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